

To subtract with regrouping, follow these steps.

1. Subtract the ones column. Regroup if needed.
2. Subtract the tens column. Regroup if needed.

12
$3 \not 211$
$A B X$
$-\quad 266$
65

3. Subtract the hundreds column. Regroup if needed.

$$
\begin{array}{r}
12 \\
3211 \\
A Z X \\
-\quad 266 \\
\hline 165
\end{array}
$$

\square is left standing.

Name \qquad Date \qquad

Measure Mania

You may have heard of inches and yards, but you probably haven't heard of some of these wacky units! To find out more, convert each of the decimals to fractions. Then find that fraction in the list on the right. The correct unit of measure will be written next to the matching fraction. Write that unit of measure in the blank provided.

1. A small bunch of bananas is called what?
. 25
47/100 a hank

2. 45 gallons of fresh herring is a what? . 0007 \qquad
4/100 a bind
3. 560 yards of wool is called a what?
. 47 \qquad
4. Buttons are measured in units called what?
2.75 \qquad

5. In England, a 40 -inch stick of firewood is called what? . 07

25/100 a hand

8. 250 eels are called what?
.04 \qquad
7/10000 a pool
.059 \qquad
7/100 a billet
5. 500 pounds of cotton is called a what?

2 75/100 glitches
$12 / 10$ a saros

More Fun Sports

Add or subtract.

$\begin{array}{r} 91 \\ -\quad 67 \\ \hline \end{array}$	$\begin{array}{r}48 \\ +\quad 43 \\ \hline\end{array}$	$\begin{array}{r}92 \\ -\quad 45 \\ \hline\end{array}$	$\begin{array}{r}70 \\ -\quad 17 \\ \hline\end{array}$	$\begin{array}{r}63 \\ -\quad 47 \\ \hline\end{array}$	$\begin{array}{r}38 \\ +\quad 54 \\ \hline\end{array}$	$\begin{array}{r}29 \\ +\quad 36 \\ \hline\end{array}$	$\begin{array}{r}80 \\ -\quad 42 \\ \hline\end{array}$
skating	football	hockey	volleyball	basketball	soccer	tennis	track

Complete the puzzle with the sport that goes with each answer. Across Down
3. 92

1. 47
2. 16
3. 53
4. 65
5. 24
6. 91
7. 38

11, Choose your favorite sport from above.
8
On another piece of paper, write a problem with its same answer. Try to write a problem that includes regrouping.

It's Great to Associate!

The associative property: Changing how the factors are grouped does not change the product.

Finish each multiplication sentence and draw an array to show the associative property. Write the product in the circle.

| A. | | |
| :--- | :--- | :--- | :--- |
| $2 \times(5 \times 3)=(2 \times 5) \times 3$ | | |
| 00000 | 00000 | 000000 |
| 00000 | 00000 | 00000 |
| | | |

B.

$$
(2 \times 6) \times 5
$$

C.

$$
(4 \times 6) \times 2=
$$

$(4 \times 6) \times 2=$
E.

$$
3 \times(7 \times 2)=
$$

F.

$$
3 \times(2 \times 8)=
$$

D.
$8 \times(1 \times 5)=$
H.
$(9 \times 2) \times 3=$
\qquad
\qquad

Riddle

Where do aliens wash?

Write the missing numerator.
Solve the riddle using your answers below.

$\frac{1}{2}=\frac{}{4}$	M	$\frac{2}{6}=\frac{}{9}$	
$\frac{2}{3}=\frac{}{9}$	S	$\frac{1}{2}=\frac{}{8}$	E
$\frac{3}{4}=\frac{}{12}$	A	$\frac{1}{3}=\frac{}{15}$	I
$\frac{1}{2}=\frac{}{22}$	H	$\frac{1}{2}=\frac{}{16}$	T
$\frac{3}{10}=\frac{}{100}$	R	$\frac{2}{3}=\frac{}{18}$	N
$\frac{1}{2}=\frac{}{14}$	G	$\frac{1}{2}=\frac{}{20}$	W

Solve the Riddle! Write the letter that goes with each answer.

$$
\begin{aligned}
& \overline{5} \overline{12} \frac{}{2} \frac{}{4} \frac{}{4} \frac{}{3} \frac{}{30} \\
& \frac{}{6}-\frac{}{11} \frac{}{4} \frac{}{4} \frac{}{30} \frac{}{6}
\end{aligned}
$$

Multiply. Then use the code to answer the question below.
O. 142
X 21
E. 425

$\mathrm{X} \quad 13$

V. 123

$\times \quad 28$

W. 324
x 42
Y. $\begin{array}{r}425 \\ \times \quad 12 \\ \hline\end{array}$
R. 123
C. 214

$\mathrm{x} \quad 19$

$\times \quad 26$

A. 314

$\times \quad 13$

I. 234
$\begin{array}{r}\times \quad 27 \\ \hline\end{array}$
G. 248

$\mathrm{x} \quad 51$

L. 134
P. 121

$\times \quad 52$

T. 181
S. 341

$\times \quad 16$

$$
\begin{aligned}
& \times \quad 14 \\
& \hline
\end{aligned}
$$

What should you remember when having fun on wheels?

$\overline{4,082}$	$\overline{6,968}$	$\overline{13,608}$	$\overline{4,082}$	$\overline{5,100}$	$\overline{4,774}$		$\overline{13,608}$	$\overline{5,525}$	$\overline{4,082}$
$\overline{2,337}$									
$\overline{7,744}$	$\overline{2,337}$	$\overline{2,892}$	$\overline{2,982}$	$\overline{5,525}$	$\overline{5,564}$	$\overline{2,896}$	$\overline{6,318}$	$\overline{3,444}$	$\overline{5,525}$

It's All the Same!

Equivalent fractions have the same amount.

Write each missing numerator to show equivalent fractions.
A.

$$
\frac{1}{2}=\frac{}{4}
$$

B.

C.

D.

$\frac{1}{3}=\frac{}{6}$
$\frac{1}{4}=\frac{}{8}$

$$
\frac{1}{3}=\frac{}{9}
$$

E.

$\frac{1}{5}=\frac{}{10}$
F.

.
G.

H.

$\frac{1}{2}=\frac{}{16}$

$$
\frac{1}{4}=\frac{}{20}
$$

Write the number sentence that shows each set of equivalent fractions.
I.

J.

L.

- = -

- = -
- = -
(1)

Raymond's pizza has been cut into fourths. Debbie's pizza has been cut into eighths.
Raymond eats $2 / 4$ of his pizza. Debbie eats $4 / 8$ of her pizza. Did they eat the same amount of pizza? On another sheet of paper, draw a picture to show your answer.

Write the name of each shape and the number of sides.

shape \qquad
sides \qquad
4.

shape \qquad
sides \qquad
2.

shape \qquad
sides \qquad
5.

shape \qquad
sides \qquad
3.

shape \qquad
sides \qquad
6.

shape \qquad
sides \qquad

Write the name of the type of angle shown.

7.

8.

\longrightarrow
\qquad
9.

Add It Up!

Using what you already know about addition with regrouping, solve the following problems. You may use such strategies as mental math, place value, and regrouping more than once, as needed.

1. 932
$+168$
2. $\mathbf{4 , 3 5 8}$
$\begin{array}{r}+\quad 257 \\ \hline\end{array}$
3. 529
1,140
$\begin{array}{r}+3,349 \\ \hline\end{array}$
4.

848
$+\quad 254$

3. $\begin{array}{r}672 \\ +\quad 288 \\ \hline\end{array}$
4. $\begin{array}{r}6,782 \\ +\quad 19,803 \\ \hline\end{array}$
5. $\mathbf{1 , 2 3 4}$ 5,678
$\begin{array}{r}\text { +91,011 } \\ \hline\end{array}$
6.

$+688$
8. 98,388
$+65,973$
12. 4,562
30,829
$\begin{array}{r}16,049 \\ \hline\end{array}$

Name
Date

Fpactions ApE a Breeze

Sail into fractions by renaming each fraction below in lowest terms.
If the fraction is equal to $1 / 2$ or $3 / 4$, shade the box blue.
If the fraction is equal to $1 / 4$, shade the box yellow.
If the fraction is equal to $1 / 3$, shade the box green.
If the boxes are colored correctly, a picture will appear.

Bon Voyage!

The Math Early Bird

If you change the grouping of the addends, the sum will remain the same.
This is called the associative property.

$$
(4+2)+1=4+(2+1)
$$

Solve each problem. Then use the code to answer the riddle below.
$(3+5)+8=\square+(5+8)$

$(8+2)+9=8+(\square+9)$ $9+(3+8)=(\square+3)+8$

$$
6+(4+3)=(6+\square)+3
$$ $5+(2+4)=(5+2)+$

$$
7+(6+6)=(\square
$$ $+6)+6$

\square
$(10+2)+4=10+(\square+4)$

$$
8+(8+4)=(\square+8)+4
$$

$$
\begin{aligned}
& (10+3)+2=10+(\square+2) \\
& 7+(2+8)=(\square+2)+8
\end{aligned}
$$

$$
6+(4+3)=(\square+4)+3
$$

$$
(9+8)+2=\square+(8+2)
$$

$$
\square+(8+2)
$$

$$
7+(8+4)=(\square+8)+4
$$

$$
(9+3)+2=\square+(3+2)
$$

$$
7+(7+3)=(7+7)+[
$$

\square

$$
(\square+8)+5=7+(8+5)
$$

$$
7+(2+6)=(\square+2)+6
$$

\square

$$
+8)+3=(9+8)+3
$$

What game do birds play?

Fill in the blanks to complete the number sequences.

1. 150

400
450
$500 \quad \mathbf{G}$
2. 12

18
24 \qquad 36
42

54
N
3. 120

116
114

108 A 104
4. 4

20

28 \bar{D} 36
5. 45
$60 \quad 75$

105
120 \qquad 150
H

Use the letters underneath the numbers you have filled in to find the answer to the following riddle.

What did the vacuum cleaner say to the broom?

$\overline { 2 4 } \longdiv { 3 5 0 } \frac { 2 5 0 } { 1 6 }$

Greedy Gretchen

Gold! Gold! Gold! Help Greedy Gretchen find the path through Nottingham Forest from her house to the bank. On which path can she collect the most gold? Draw a line to show that path. On another sheet of paper, explain your answer.

Any Old Place Wont Do

Draw a line from a place value in the left column to a number in the right column that has a digit with that place value.

Hint
The place value of a digit in a number is determined by where it is in the number.

1. four tens
a. 11,708
2. eight ten thousands
b. 748,910
3. nine hundreds
c. 30,246
4. five ones
d. 14,861
5. eight hundred thousands
e. 426,379
6. six tens
f. 81,392
7. seven thousands
g. 917,573
8. zero ten thousands
h. 2,685
9. seven hundreds
i. 908,839
10. four hundred thousands
j. 869,554
Bonus! What is the largest number in the right column? \qquad

PLACE VALUE

Here are the place values for the number 659,432.
hundred thousands ten thousands thousands hundreds tens ones 6
\qquad
Use a protractor to find the measurement of each of the following angles.

measurement $=$ \qquad
3.

measurement = \qquad
2.

measurement $=$ \qquad
4.
measurement $=$ \qquad

Use a protractor to draw an angle equal to the measurement given.

1. 33 degrees

\longrightarrow

3. 25 degrees
4. 49 degrees

If the number has a 5 in the ones place, color the shape green.
If the number has a 5 in the tenths place, color the shape pink.
If the number has a 5 in the hundredths place, color the shape yellow.
Finish the design by coloring the other shapes with colors of your choice.

Taking It Further: Place the following decimals in the correct places on the lines below the dots: 4.9, 1.7. 2.5, and 0.2 .

Name \qquad Date \qquad

Fly the Coop

These birds have flown the coop! Luckily, they didn't get too far before they returned home. How many yards, feet, or inches did
 the homing pigeons put on their wings? Answer the questions below to find out.

How far is that in . . .

1. Flyer flew 150 yards.
2. Feathers McGee flew 2,100 inches.
3. Claws flew 36 feet.
4. Ruthie the Rambler flew 57 yards.
5. Beatrice Birdbrain flew 126,720 inches. feet
feet
yards \qquad
feet \qquad
inches \qquad
yards \qquad yards \qquad
inches \qquad
yards \qquad
inches \qquad
inches \qquad
yards \qquad
inches \qquad
